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Abstract

The proper specification of boundary conditions at artificial boundaries for the

simulation of time-dependent fluid flows has long been a matter of controversy.

In this work we apply the general theory of asymptotic boundary conditions for

dissipative waves, developed by the author in [8], to the design of simple, accurate
conditions at a downstream boundary for incompressible flows. For Reynolds num-

bers fax enough below the critical value for linear stability, a scaling is introduced

which greatly simplifies the construction of the asymptotic conditions. Numerical

experiments with the nonlinear dynamics of vortical disturbances to plane PoiseuiUe

flow are presented which [Uustrate the accuracy of our approachl The consequences

of directly applying the scalings to the equations are also considered.

1 Introduction

Problems posed on unbounded domains are ubiquitous in theoretical and applied fluid

mechanics. Examples include exterior domains, as arise in aerodynamics, and cylindrical

domains, as are found in the study of internal flows. Numerical simulations require a

finite computational mesh which is typically obtained by introducing an artificial bound-

arv. The proper specification of boundary conditions there has long been a matter of
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controversy.Their choiceis often madeon the basisof ad hoc reasoningand their effect
on the solution not fully determined.

In [8] the author developsa generaltheory of asymptotic boundary conditions for
linear, dissipative wave propagationproblems. The basic approach is to numerically
identify dominant wave groups and construct linear approximations to the dispersion
relationwhicharevalid in the neighborhoodof the dominantwaves.Theseleadto simple,
local boundary operators. Error estimatesfor the truncated problem are derivedwhich
establishconvergenceas the sizeof the computationaldomain is increased.The goalof
this work is to apply the generaltheory to the linearized, incompressibleNavier-Stokes
equationsand to test it in fully nonlinearsimulations.

In Section2 weoutline the constructionof the asymptoticexpansionsand boundary
conditions for the linearizedNavier-Stokesequations. Simplified approximations to the
full theory, valid for moderateto large Reynoldsnumbers,are also constructed. These
lead to boundary conditions involving fixedconstantsand a parametric dependenceon
Reynoldsnumber. The simplificationsare basedon a simplescalingargument. In Sec-
tion 3 we carry out the numericalcomputationof the asymptotic boundary operators
for the special caseof linearizations about plane Poiseuilleflow. Both the simplified
and full theory areconsidered,the latter to validate the approximations leading to the
former. Numerical experimentswith the nonlinear dynamics of vortical disturbances
are presented.Theseveri_" the accuracyof our approachevenfor large amplitude per-
turbations. Comparisons with the solution on an extended domain are given to study

the decay of the error with increasing domain size. Finally, in Section 4, we develop

an alternate approach based on the direct introduction of the scalings used to simplify

the asymptotic analysis. This leads to a simple set of boundary conditions previously

considered by Naughton [13].

Boundary conditions for similar equations based on the analysis of linearizations about

i_omogeneous base flows have been derived by Halpern [9] and Halpern and Schatzman

I10]. Related techniques have been employed by Abarbanel and coworkers [1] for the

compressible Navier-Stokes equations, by Fasel [7] for simulations of transition and by

Ache [9] for steady flows. More recently, Danabasoglu and coworkers [5] have investigated

the effect of outflow conditions on the simulation of spatially evolving instabilities.



2 Construction of asymptotic boundary conditions

for the incompressible Navier-Stokes equations

2.1 Asymptotic analysis

We consider the incompressible Navier-Stokes equations linearized about plane parallel

flOW:

U' ,o_ _ _ 1 (a_ 2.._._'_+ (y)_ - U"(y)at _ kay2 +at -- Ret ay 2 ]

+ i o_ 1...u.,-,,,,_¢ (1)

0=¢ __O=_' (,2_)
_., = c_z-.---i + 3y2,

(x,y) e (0,_) x (yo,y,), (a)

_,- - 0, y = y0, yl. (4)
c3y

g'(O.y,t) -- gO(_/,t), _'(0, y,t) = gl(y,t). (0)

Here, g, is the stream function perturbation, ,., is the vorticity perturbation and U(y) is

the parallel base flow. For generality we have included eddy viscosity terms consistent

with a simple mixing length model. (See, e.g., Stanisic [14].) Re_ is, then, a Reynolds

number based on the mean flow and the kinematic viscosity while Ret is a turbulence

Reynolds number. An unbounded domain in y could also be considered.

Equations (1-5) are meant to model the 'far field' for a more complicated and gen-

eral class of problems. Our goal is to derive reasonably simple but accurate boundary

conditions at a downstream boundary, z = r. The general approach to the construction

of asymptotic boundary conditions given in [8] mav be directly' applied in this case. To

begin we consider the eigenvalue problem:

' - Ro, a_ / (6)
a.,o_2 (D(y)&) - -_ D (y)_,

c_= ;_ + -b-7 . (r)

The equations above are well known in the theory of hydrodynamic stability and are usu-

ally referred to as the spatial Orr-Sommerfeld equations. Techniques for their numerical

and asymptotic analysis have been extensively developed. (See, e.g. Drazin and Reid

[6]).
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Solutions to the linearizedproblemmay beexpressedin terms of pairs,

(A,(s),(&t(y;s)

satisfying _(At(s)) < 0 for _(s) sufficientlylarge. Wehave:

(8)

"') = _ ¢,, (9)V_ t

_0 t@l = ct(p)q_(x, y, t - p)dp,

1 fce,,+_,,,)_(co,(y;s))q,(x, y, t) = 2_r-"_ ¢,(y; s) ds.

Here C is an appropriate inversion contour.

By a standard steepest descent computation we formally obtain:

(1o)

(11)

qz(x,y,t), e={"(")"+_'("(_))) ( _(y;a'(7)) )v/2,,_7(_-(_))x _',(v;_'(-,)) ' (12)

where

and s" satisfies:

t
= -, x >> I, (13)

X

AI(_')= -% R(_) > 0, -_(v)= 0. (14)

Substituting the asymptotic expansion of qt into (10) yields an approximation to (I)l.

The expansion itself may be interpreted as a description of wave packets moving at their

group velocity, 1.., The formula for @t is then a superposition of wave groups generated
at various times.

In contrast with the usual problems in dispersive wave propagation, our generalized

wave groups decay (or grow) exponentially as they propagate with a rate:

u,(_) = _(_'('_)'Y+ A,(,'(_))) # o. (15)

We exploit this property to restrict our attention to a small number of dominant wave

groups. That is, we expect the signal far downstream to be dominated by wave groups

for which _ut is maximized. Differentiating with respect to 7 and using (14) we find a
necessary condition for a local maximum:

_;(_) = R(_'(_)) = 0. (16)



Let _t correspond to a global maximum of/Jl. The exact, nonlocal boundary condition

satisfied by qt is given in transform space by:

(0 )- =0. (17)

We approximate it by replacing At by the linear part of its Taylor series at s'(_t). This
leads to a local condition:

(_-0-£- At(s'(_t))--A,(s'(_t))(_---- s'('_,)))_,=0. (18)

('z) ifitcorrespondstoamaximumoverThis operator may be directly applied to ¢

all I. More generally, an operator may be constructed as the product of operators taken

from a few modes and local maxima.

We summarize below a procedure for constructing the asymptotic boundary condi-
tions:

# Compute local minima of the decay rates, -#t. That is compute solutions of (14)

and (16).

• Choose from these a small subset, (._j, Ij), including the overall minimum decay rate

as well as any other wave groups whose decay rate is close enough to the minimum.

• Use as the boundary condition at z = r:

(0 0 (0)I-_ _xx - Ab(gY)- b(sJ)(O'_ - _:) _ _ B ¢, = 0 " (19)
./

In [8] an error analysis is developed for this procedure. The main result is that the

difference, e, between the solution on the truncated domain and the true unbounded
domain solution satisfies:

e_ 0 r

II ll = O(-T-), ,---, (20)
Here,

#0 = max/zt(7). (21)
l,"y

Although this result was obtained under fairly general hypotheses, we have been un-

able to verify them in this case. The error estimate is, however, consistent with the

computational experiments we will present.

In order to directly complete the search for the dominant wave groups, the repeated

numerical solution of (6-7) in conjunction with a line search procedure is required. We

have implemented an algorithm to accomplish this using a spectral discretization of the

Orr-Sommerfeld problem [4]. This will be discussed in greater detail in the context of

the numerical experiments.



2.2 Simplified approximations

Despite the availability of a number of appropriate techniques, the direct numerical ap-

proach to the construction of the asymptotic boundary conditions has certain drawbacks.

Among these are the expense of the computation and the need to recompute the boundary

condition as the Reynolds number(s) change. Consequently, we have developed an alter-

nate procedure based on the asymptotic analysis of (6-7) for Ret,l large. The assumption

underlying this analysis is:

Assumption 1 The dominant wave groups satisfy:

(22)

InWe note that this condition does not necessarily hold for all Reynolds numbers.

particular; near the critical Reynolds number from linear stability theory the dominant

wave group corresponds to the critical Tollmien-Schlichting waves which, in general, do

not have s" = 0. For the special case of Poiseuille flow, which we have used for numerical

experimentation, we find that Assumption 1 holds for a wide range of subcritical values

of Ret.

By itself Assumption 1 allows the construction of the asymptotic boundary conditions

using a single solution of the Orr-Sommerfeld equations. Furthermore, the necessary

condition for its validity, (14), can be directly verified. Further simplification occurs

when we consider an expansion of the solution of (6-7) in powers of _-_-.1 (For laminar

flows this is replaced by an expansion in h-!_). We take:

= Re," (23)

To leading order the eigenvalue problem becomes:

( )U(y)- -fi- u"(y) =

where we have made the substitution

__2 (D(y) a: (24)

- (25)
Oy2 '

and
Ret

et = Re""_t" (26)

We may now proceed to construct the asymptotic boundary conditons based on a

numerical analysis of (24) with Assumption 1. We emphasize the advantages of this

simplification:
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• We needonly solve(24) oncefor _ = 0 and then computethe required derivatives,

dii"

• The resulting boundary conditions depend algebraically on the Reynolds number.

Unfortunately, (24) with ._ = 0 is not self-adjoint, so it is difficult to obtain general

results on its solutions. An ideal result would guarantee the existence of solutions with

real, positive group velocity. We note that a real group velocity is guaranteed for real

eigenvalues. It is tempting to rewrite the troublesome term, U _°.-_.2 , as its symmetric part
Oy

plus a perturbation, but the unbounded 'perturbation' is too large for the direct appli-

cation of the general theory (Kato [12]). It is possible to derive some simple equations

for the real and imaginary parts of A:

_R(_) = -I0

3(i) = -_(i)/_,

where

(28)

j_yyl
Io = (D(y) + e,)lg,"12dy, (29)

o

/:I, = U(y)[_,'12dy, (30)

I:-- _ U"(y)[_l:dy, (31)

h = 3( U'(_)_'_,'dy). (32)
o

These relations suggest that all but finitely many eigenvalues will have negative real part

and that they cannot lie too far from the real axis. For the special case of Poiseuille

flow; y0 = -1, Yl = 1 and U = 1 - y2 our numerical solution of (24) indicates that

all eigenvalues are real and negative and that the group velocities are positive. Again,

these conditions may be checked in the general case by a single solution of (24). The

computational cost of this procedure is then negligible in comparison with that of the

full simulations.

3 Numerical experiments: the dynamics of some

vortical disturbances to plane Poiseuille flow

In this section we describe the results of numerical experiments with the asymptotic

boundary conditions we have developed. We take our base flow to be laminar channel



flow:

U(y)=l-y', yE(-1,1), (33)

and consider (1) without the eddy viscosity terms. (That is, D = 0 and Re = Re_.)

We divide our discussion into two parts considering first the eigenvalue problems used to

construct the asymptotic boundary conditions and, then, the use of these conditions in

the simulation of the full nonlinear equations.

3.1 Numerical analysis of the full and reduced eigenvalue prob-
lems

We have developed two separate programs for the computation of the various quantities

defining the boundary conditions. The first solves a discrete approximation to the reduced

eigenvalue problem (24) with _ = 0 to find A and d__. It is the simplified condition defined
by this reduced problem which is used in the simulations. The second solves a discrete

(pseudospectral) approximation to the full spatial Orr-Sommerfeld equations, (6-7), and

also computes the group velocities. The results of the latter are used to validate the use

of the reduced equations for moderate Reynolds numbers. In practice, the point of the

approximations leading to (24) is to avoid the expense of solving (6-7), and we show that

this is justified in the case of Poiseuille flow for Re large enough compared to 1 but far

enough below Rec,-,t _, 5775. For larger values of Re the full eigenvalue problem must be
used.

Approximating (24) we introduce a uniform mesh, yi = -1 + ih, i = 1,..., N, h =
A

2 Denote by _i the approximation to 0(yi). Using second order centered difference
,\'+1 "

approximations to the derivatives we have:

(2¢i + (1 - y_)D+D__,) = (D+D_)2_,, (34)

where

D+D__ = (_+' - 2_; + +;_,)
h2

(D+D_)2¢ _ = (_,+2 - 4_+, +6¢i- 4__, + _-2)
h 4

These are supplemented by the discrete wall conditions:

(35)

(36)

_o = _N+l = 0,

_I-I = ¢I, ¢N+2 = t'I/N.

(37)

(3s)
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A d..A_
d,

-21.659 -1.999

-28.111 -1.384

-72.694 -1.991

-85.178 -1.430

Table t: Dominant eigenvalues

The eigenvalues and eigenvectors of the resulting generalized matrix_eigenvalue prob-

lem were computed using the IMSL subroutine EIGZF. To compute d_ = a_d_ d. we differ-

entiate (24) with respect to g to obtain:

M) d6 . 0%- = oy " (39)

Here L and M are, respectively, the partial differential operators appearing on the left and

right hand sides of (24) with $ = 0. Multiplying this equation by an adjoint eigenfunction

and integrating leads to an expression for _"T;" For the discrete approximation we simply
O_

use the original difference approximation to L and D+D_ for _. Left eigenvectors,

"i', were computed by inverting the matrix of right eigenvectors and were then used to
dA.

compute W.
dA _, T,D+D_ _

ds - E, T, (2_, + (1 - y_)D+D__,)" (40)

All eigenvalues were found to be real and negative. Tabulated are the six smallest eigen-

values along with the corresponding values of dA_. For these we have N = 39. Their

accuracy may be verified by comparing with solutions of the full Orr-Sommerfeld equa-

tion for s = 0 published by Bramley and Dennis [3].

The first and third eigenvalues correspond to even stream function perturbations

while the second and fourth correspond to odd perturbations. It is interesting to note
(dA]-_that the group velocities, -_'T;J , are nearly equal within each symmetry class. In the

experiments which follow a product boundary condition based on the first two modes is
-- 8. 'r --72.694_"

employed. This is formally justified if e_ >> e_ However, the near equality of

the group velocities is likely to extend the range for which the two mode condition is

reasonably accurate.

It is of some interest to view the flow field which results from adding to Poiseuille

flow the asymptotic solution corresponding to the first symmetric and antisymmetric

eigenfunctions. These are shown in Figure 1 for Re = 100, c = A6(t - to), t = to + 3.



It must be emphasized that the amplitude of the perturbation, A, is here chosen to be

much larger than a linearized analysis can reasonably allow. Nonetheless, the streamlines

bear interesting similarities to those we have obtained in full nonlinear simulations.

Although the solutions of the reduced eigenvalue problem described above satisfy

necessary, local conditions for dominant wave groups, sufficient conditions are global

and more difficult to check. Indeed, it is well known that Poiseuille flow becomes linearly

unstable for Re ,_ 5775 [6]. Then the dominant wave groups are expected to grow in

space, while those above decay. In order to further investigate the dominance of the

solutions of the reduced problem for subcritical Reynolds numbers, as well as compute

the asymptotic boundary conditions for higher Reynolds numbers, approximate solutions

of the full spatial Orr-Sommerfeld equation were computed.

The mesh points are taken to be the Chebyshev nodes:

(r(i- i))y, =cos\ N , i= 1,...,N+ 1. (41)

The ijth component of the (N - 1) x (N - 1) differentiation matrix D1 is defined by:

* Let Pj(y) be the polynomial of degree N which is 1 at y = Yj+I and 0 at the other

nodes.

• Let (D1), = Pj(Yi+,), i,j = 1,...,N - 1.

The ijth component of the (N + 1) x (N + 1) differentiation matrix D2 is defined by:

• Let Pj(y) be the polynomial of degree :V which is 1 at y = yj and 0 at the other

nodes.

• Let (D2);j = Pj'(y,), Z.j = I,....V + 1.

Take u: to be an (N + 1)-vector whose ith component approximates ,z!y,) and ul =

.\u_. Let u3 be an (N - 1)-vector whose ith componentapproximates ,\W(y,+l) and u4

the (N - 1)-vector whose ith component approximates _P'(y,+I). Note we are explicitly

imposing the boundary conditions that ¢ and its normal derivatives be zero at y = ±1.

A discrete approximation to the eigenvalue problem (6-7) is then given by:

Re. V -D2 + Re. s. I Re. T

I 0 0

0 W 0

0 0 -D1

Here the (N + 1) × (N - 1) matrix T is given by:

0

0
g=Ag.

D1

0

T= 2I ,

gr

(42)

(43)
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TIME - 3 RE - 100.0

..
?

8
-,.o -o'.,, -o:,o -o= o:oo o= o:_ o_r,

X

81

Figure 1: Asymptotic solutions of the linearized problem superposed on Poiseuille flow.
TIME

The signal data is a A_(TIME) and X = z - ,--rrrv-,.
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while the (N - 1) x (N + 1) matrix W is given by:

W=((_ I I_). (44)

The problem was solved for A given s using the IMSL subroutine EIGCC. Approximations

to _ were Mso computed following the same ideas used for the simplified eigenproblem.

A (coarse) sampling of Reynolds numbers between 100 and 6000 was taken. For each

value of Re solutions for s = i-_, k = 1,... ,21 were found. This choice is motivated

by (16) and the fact that neutral modes in the classical theory satisfy ]'_(s)[ < 1 [6]. If

the imaginary part of the derivative of any eigenvalue appeared to pass through 0 and

the real part of A was of the same order as the solutions of the reduced problem, the s

increments were refined in the appropriate neighborhood. Note that a real _ corresponds

to a maximum or minimum of R(A) as s varies on the imaginary axis. On the basis of

these computations we tentatively conclude that the modes approximated by the reduced

eigenvalue problem are dominant for a range of Reynolds numbers including at least the
interval 100 _< Re <_ 4000.

It is somewhat surprising, and perhaps of some interest in the study of subcritical

transition phenomena, that the reduced problem still provides the dominant modes at

so high a Reynolds number. For example, for Re = 4000 we find that the least damped

mode with s" _ 0 has a decay rate more than one and a half times that of the least

damped mode with s" = 0. For Re = 6000, on the other hand, there is an eigenvalue

with positive real part for _(s) in an interval including (.25, .28). The dominant wave

group is then described by'

s" _ .27i, (45)

,\ _- 9.11 x 10 -4 - 1.027i, (46)

dA
-- _ -.380. (47)ds

3.2 Numerical method

In order to test the proposed boundary conditions, we consider the following problem:

Ot Oy Ox + Ox Oy - Re \ Ox 2 + Oy 2] ' (48)

(x,y) E(O,r)x(-l,l),

(49)

(50)
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with boundary and initial conditions:

y3

0(x,y,0) = -y + -g-, .,(=,y,0) = 2y, (51)

¢(x,-1,t)=_, g)(x,l,t)=-_, _yC(X,:t:l,t)-0,

,_,(o,y,t) = go(y,t), ,o(o,y,t) = g,(y,t),

B¢(r.y,t)= B(-y+ Y---_), Bw(r,y,t)= B(2y).

Here the asymptotic boundary operator B is given by:

B= 7zz - _, - c_,N - A2- c_2 ,

(52)

(53)

(54)

(55)

A uniform mesh,

21.6593
,\1 = -_, Crl = -1.9990265, (56)

Re

A2 28.11134- , or2 = -1.383905. (57)
Re

gi = -l + ih, i= 1,...,N; xj = jh, j = 1,...M, (ss)

was introduced and the spatial derivatives replaced by the standard second order central

differencing formulas; D+ D_ for the second derivatives and Do for the first. Time differ-

encing was Crank-Nicholson for the viscous terms and Adams-Bashforth for the transport

terms so that for interior nodes we have:

_ 5t _72_ _(3T (t)
(1 5t _Y2_ w(t+6t) = ( l +2Re] 2Re ] w(t) - . - T(t-6t)), (59)

w(t+ st) = _2,1,(t+6t).

Here V_ is the discrete Laplacian and T (t) is given by:

T (t) = -Doug,(t)Do=w (t) + Dox_(t)Douw (t).

(60)

(61)

For all our simulations we have taken s_ = .125. The wall boundary conditions on tb are

also directly discretized and w at the wall is computed by (60). The asymptotic boundary

condition (54) was replaced by a product of discrete boundary operators following Higdon

[11]. A typical term,

Bt = - A - a , (62)
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is approximat,ed by:

= + - - + + +
a + t) +-_(v+ + _ - v+ - v_-),

(63)

where

T,,_ =, ('+_) (64)
"(=±_)"

Then I'I Bt becomes _/}t. In the present case we have the product of two first order

operators. The resulting discrete operator then involves three mesh lines in x and three

time levels.

To solve the linear system required by the implicit time stepping we employed what

we believe to be a novel direct method based on discrete separation of variables. That

is a method similar to fast solvers for elliptic equations. We begin by diagonalizing a

rearrangement of the 2N x 2N matrix:

( -_I- D+_D__ 0 ) (65)B = I -D+_D__ "

Although B is not symmetric, we find its eigenvalues to be real and positive for &6t

sufficiently large, certainly within the range of problems we have considered. Denote its

eigenvalues by ai with corresponding right eigenvectors F, Writing,

( _'d( t'("6 0 / 2N,_(,+_,) = _c}'+_')(x)_',. (661
i=l

we obtain an uncoupled collection of tridiagonal systems for the ci's:

(pCi -- lJ+zlJ_z)C i = f,, (67)

where the f,'s are computed from the right hand sides of the implicit time stepping

formulas. Note that the boundary conditions at 0 and r are directly applied to c,.

A formal operation count for this method results in an estimate of 8N:M + o(N2M)

operations per time step, which is the the same as for back substitution with a band

solver (without pivoting). However, the preprocessing is likely to be cheaper for our

method, at least when M is large enough compared with N (long channels).

3.3 Results

We first present results for Re = 400. We take N = 39 and consider r = 2, 4, 6.

(M = 40,80, 120.) For purposes of comparison, we also compute a solution with r = 15,

14



Figure 2: Vorticity contoursat t = 2.5, r = 15.

which we will refer to as exact, and for r = 4 with Neumann boundary conditions,

0,2, _ 0..__= 0. The inflow perturbations are taken to be:
Oa: -- Oa:

Va f Ae -6{v2+0-202), 0 < t < 1

go =-v+_+_, 0, t> i

{ 24Ae -6(v2+0-202), 0 <_ t <_ 1gl = 2V + O, t > 1

(6S)

(69)

Here A is an adjustable amplitude parameter.

Figure 2 depicts vorticity contours at t = 2.5 for r = 15 and A = 2. Note that the

flow certainly cannot be considered a small perturbation of Poiseuille flow, so that we

cannot expect the linearized analysis leading to the boundary conditions to be valid. We

are nonetheless interested in testing the conditions in this nonlinear setting. Figures 3-5

depict the same flow at t = 6 as well as simulations with r = 4 using the asymptotic

boundary conditions and Neumann conditions. We see that the exact solution and the

one computed with the boundary conditions we propose are virtually indistinguishable,

while the flow computed with the Neumann conditions is greatly distorted. Note that the

displacement of the vortex causes a large error at the upper wall which extends well back

into the computational domain. Figures 6-8 depict the same computations at t = 7.5.

Although the main disturbance has passed outside the computational domain, the error

15
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Figure 3: Vorticity contours at t = 6, r = 15.
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Boundary Condition r Maximum Error

Asymptotic 2 1.8

Asymptotic 4 .65

Neumann 4 7.0

Asymptotic 6 .42

Asymptotic 2 .12

Asymptotic 4 .018

Asymptotic 6 .013

Table 2: Vorticity errors for 0 < t < 10.

at the walls in the Neumann computation is still quite evident.

It is also interesting to look at the maximum errors as a function of r. Here, again, we

take the error to be the difference between the given solution on the truncated domain

and the solution for r = 15. The tabulated results clearly show the decay of the error

with increasing r. Indeed the theory predicts a decrease in error of approximately _ as

r increases from 4 to 6, and the results show this precisely. This conclusion can only be

tentative, however, as at the end of the simulation the disturbance had not fully passed

through the boundary in the case of r = 6. The error decreases much more rapidly as r

increases from 2 to 4, but this is not surprising as our entire construction is dependent

on large r asymptotics.
Nonlinear effects are demonstrated by comparing results for .4 = ½ with those for

.4 _ Although the amplitude is scaled bv a factor of S, the errors scale by factors
-- 16"

of 15 to 30. Nonetheless, we are quite surprised by the success of our method in the

nonlinear regime. It cannot be explained by our linear analysis. It seems a nonlinear

analysis of disturbance propagation is required. This is an interesting topic for future

research.

A limited number of simulations have also been carried out at Re = 2000 for the same

inflow disturbances. Figures 9-10 show vorticity contours at t = 5.75 for simulations

using, respectively, the asymptotic and Neumann conditions at r = 4. In this case we

have N = 79 and M = 160. Due to the expense involved, we were unable to carry out a

similar simulation on a large domain. Nonetheless, the differences in the vortex dynamics

for the two downstream conditions is clear and, apparently, analagous with the results

at lower Reynolds number.
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Figure 9: Vorticity contours at t = 5.75, r = 4, asymptotic conditions.
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Figure 10: Vorticity contours at t = 5.75, r = 4, Neumann conditions.
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4 Primitive Variable Formulation and Direct Ap-

plication of the Scalings

In this section we discuss the application of the ideas in this paper to the derivation

of asymptotic boundary conditions for the primitive variable formulation of the Navier-

Stokes equations. We are guided by the theory of boundary conditions for primitive

variable formulations which is developed in the doctoral dissertation of Naughton [13].

This theory is based on the construction of energy estimates for the linearized equations.

We emphasize that the conditions we will describe have not yet been fully analyzed or

implemented.

Linearizing about a parallel flow and assuming, for turbulent flows, a simple eddy

viscosity we have:
Ou Ov

o--:+ _ = o, (70)

o-7+U(Y)_+U'(y)v = - +_to._ + oy_/
o 'D' ,o,,_ (71)

Ret J)

_" U" ,o, _ i (a% 0%__--;+ (y __ = - + _ _,_-_ + _-_ ]
02, o ov,_. (72)+--'R,,(D(:):: + ::D(y): 2]

It is not entirely clear from the form of the equations what the correct number of

boundary conditions is at an outflow boundary. However, following either the analysis

of Halpern and Schatzmann [10] or Naughton [13] we seek two conditions. Often in nu-

merical algorithms the somewhat awkward divergence equation is replaced by a Poisson

equation for the pressure. Then, an additional boundary condition is needed. To guar-

antee that the velocity field is divergence free, this condition must in general ensure that

the divergence is zero at the boundary. (For outflow boundaries Naughton has shown

that this may be relaxed to a Neumann condition on the divergence.)

One possibility is to apply the boundary operator derived in the sections above to

two of the perturbed variables. For example,

Bu = O, (73)

Bv=O. (74)

An alternate approach, which could also be applied to the stream function - vorticity

formulation, is to introduce directly into the equations the scalings used to approximate

the spatial Orr-Sommerfeld equation. In terms of the physical variables these are:

a 0(_1, (75/G =
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o (76)

(Here Re is the turbulent or kinematic Reynolds number as appropriate.) The continuity

equation, (70), may be integrated from a wall boundary to yield:

1

v = O(_). (77)

Differentiating (77) with respect to x yields:

av (78)

while substituting it into (72) along with the scalings leads to:

ap O(._e2 ). (79)

Dropping the O( 1_'_'_2) terms results in equations which could be used as boundary

conditions. Unfortunately, the pressure condition is difficult to analyze using energy

methods. To rectify this we add to it another O(R--_) term and integrate with respect to
y:

1 1 0u 1

P - ("_el + "_¢tD(Y))'_z = O(t) + O(-_e_). (80)

This corresponds to the so called normal constraint of [10]. The function _(t) corresponds

to the arbitrary constant which may be added to p. For simplicity we take _(t) = 0.

This leads to the following boundary conditions:

a-S= 0, (81)

(_!._1 1 a,,
P- Re, + -_etD(Y))-_z = 0. (82)

For solvers which use the Poisson equation for p this must be supplemented by either

a--; + _ =0or =0.

Equations (81-82) are discussed in [13] where they are called Type 3 conditions.

Energy estimates independent of Re are given there for the half channel laminar flow

problem (D = 0) using these conditions and linearizations about an arbitrary velocity

field with outflow. A simple generalization of Naughton's estimates holds in the case of
turbulent flow.

It is interesting to compare (81-82) with the conditions given in [10]. The equation

for v is common to both works. In [10] equation (82) is replaced by a more complicated

relationship between p and the velocities which is nonlocal in space.
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In the futm'e we plan to carry out numerical experiments which test these conditions

as well as to consider the problem of deriving error estimates. Among other interest-

ing questions to be studied are the appfication of these ideas to viscous, compressible

flows, their use in the simulation of interesting unsteady flows and their generafization to

problems in three dimensions. We note that the reduction of domain size allowed by the

use of asymptotic boundary conditions is of increasing importance for three dimensional

simulations. In the three dimensional case the reduction in effort resulting from the use

of the approximate eigenvalue problem or the direct use of the scalings would also be

most keenly felt.
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